ISSN 1600-5368

Wen-Zheng Ju,* Lei Shi, Kun Chen and Jia-Yu Xue

Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: wenzheng_ju@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.031 wR factor = 0.086 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[zinc(II)- μ -[2-(2-carboxylatophenyliminomethyl)phenolato-1 $\kappa^{3}O$,*N*,*O*':1' κ O'']] methanol solvate]

The title compound, $\{[Zn(C_{14}H_9NO_3)]\cdot CH_3OH\}_n$, is a polynuclear zinc(II) complex. Each Zn^{II} atom is coordinated by one N and two O atoms of a Schiff base ligand, and another O atom of another Schiff base ligand, forming a severely distorted square-planar geometry.

Received 16 June 2005 Accepted 23 June 2005 Online 30 June 2005

Comment

Zinc(II) complexes are of great interest in coordination chemistry (Vallee & Auld, 1993; Lipscomb & Sträter, 1996; Hou, 2005). As an extension of work on the structural characterization of zinc compounds, the title polymeric zinc(II) compound, (I), is reported.

Compound (I) is a polynuclear zinc(II) complex (Fig. 1). Each Zn^{II} ion is coordinated by one N and two O atoms of a Schiff base ligand, and another O atom of another Schiff base ligand, forming a severely distorted square-planar geometry; the *trans* angles in the ZnO₃N square plane are 153.10 (11) and 162.82 (10)° (Table 1). The Zn-N and Zn-O bond lengths are comparable to the values observed in other zinc(II) complexes (Chisholm *et al.*, 2001). There are no short contacts between the molecules in the crystal structure (Fig. 2).

Experimental

o-Aminobenzoic acid (0.1 mmol, 13.7 mg), salicylaldehyde (0.1 mmol, 12.2 mg) and $\text{Zn}(\text{CH}_3\text{COO})_2 \cdot 2\text{H}_2\text{O}$ (0.1 mmol, 22.0 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h and filtered. After leaving the filtrate to stand in air for 20 d, colorless block-shaped crystals were formed.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Two repeat units of the polymeric structure of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A and unlabelled atoms are at the symmetry position $(2 - x, \frac{1}{2} + y, 1 - z)$.

Crystal data

 $[Zn(C_{14}H_9NO_3)]\cdot CH_4O$ $M_r = 336.63$ Monoclinic, $P2_1$ a = 9.663 (2) Å b = 7.128 (2) Å c = 9.922 (2) Å $\beta = 98.42$ (3)° V = 676.0 (3) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.583, T_{max} = 0.689$ 3989 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.052753 reflections 191 parameters H-atom parameters constrained $D_x = 1.654 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3124 reflections $\theta = 2.7-28.2^{\circ}$ $\mu = 1.83 \text{ mm}^{-1}$ T = 298 (2) KBlock, colorless $0.33 \times 0.28 \times 0.22 \text{ mm}$

2753 independent reflections
2667 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.016$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -12 \rightarrow 12$
$k = -8 \rightarrow 9$
$l = -12 \rightarrow 7$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 \\ &+ 0.0457P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.58 \ e \ Å^{-3} \\ \Delta\rho_{min} = -0.31 \ e \ Å^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 1076 \ Friedel \ pairs \\ Flack \ parameter: \ 0.076 \ (15) \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.889 (2)	Zn1-O2	1.936 (2)	
Zn1-N1	1.935 (2)	Zn1-O3 ⁱ	1.944 (2)	
O1-Zn1-N1	94.95 (10)	O1-Zn1-O3 ⁱ	86.80 (9)	
O1-Zn1-O2	153.10 (11)	N1-Zn1-O3 ⁱ	162.82 (10)	
N1-Zn1-O2	92.84 (10)	$O2-Zn1-O3^{i}$	93.23 (10)	

Symmetry code: (i) -x + 2, $y + \frac{1}{2}$, -z + 1.

Figure 2						
The crystal	packing	of (I),	viewed	along	the b	axis.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å and an O—H distance of 0.82 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank Nanjing University for research funding.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

- Chisholm, M. H., Gallucci, J. C. & Zhen, H. (2001). Inorg. Chem. 40, 5051– 5054.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hou, H.-N. (2005). Acta Cryst. E61, m1197-m1198.
- Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.